Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(>=@z(0@z, y), x, y)
Cond_eval_3(TRUE, x, y) → eval_3(x, -@z(y, 1@z))
eval_1(x, y) → Cond_eval_1(&&(&&(>@z(x, 0@z), >@z(y, 0@z)), >@z(x, y)), x, y)
Cond_eval_11(TRUE, x, y) → eval_3(x, y)
Cond_eval_1(TRUE, x, y) → eval_2(x, y)
Cond_eval_2(TRUE, x, y) → eval_2(-@z(x, 1@z), y)
eval_1(x, y) → Cond_eval_11(&&(&&(>@z(x, 0@z), >@z(y, 0@z)), >=@z(y, x)), x, y)
Cond_eval_31(TRUE, x, y) → eval_1(x, y)
Cond_eval_21(TRUE, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(>@z(y, 0@z), x, y)
eval_2(x, y) → Cond_eval_21(>=@z(0@z, x), x, y)
eval_2(x, y) → Cond_eval_2(>@z(x, 0@z), x, y)

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(TRUE, x0, x1)
eval_1(x0, x1)
Cond_eval_11(TRUE, x0, x1)
Cond_eval_1(TRUE, x0, x1)
Cond_eval_2(TRUE, x0, x1)
Cond_eval_31(TRUE, x0, x1)
Cond_eval_21(TRUE, x0, x1)
eval_2(x0, x1)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

EVAL_3(x, y) → COND_EVAL_31(greatereq_int(pos(0), y), x, y)
EVAL_3(x, y) → GREATEREQ_INT(pos(0), y)
COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
COND_EVAL_3(true, x, y) → MINUS_INT(y, pos(s(0)))
EVAL_1(x, y) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
EVAL_1(x, y) → AND(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y))
EVAL_1(x, y) → AND(greater_int(x, pos(0)), greater_int(y, pos(0)))
EVAL_1(x, y) → GREATER_INT(x, pos(0))
EVAL_1(x, y) → GREATER_INT(y, pos(0))
EVAL_1(x, y) → GREATER_INT(x, y)
COND_EVAL_11(true, x, y) → EVAL_3(x, y)
COND_EVAL_1(true, x, y) → EVAL_2(x, y)
COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)
COND_EVAL_2(true, x, y) → MINUS_INT(x, pos(s(0)))
EVAL_1(x, y) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
EVAL_1(x, y) → AND(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x))
EVAL_1(x, y) → GREATEREQ_INT(y, x)
COND_EVAL_31(true, x, y) → EVAL_1(x, y)
COND_EVAL_21(true, x, y) → EVAL_1(x, y)
EVAL_3(x, y) → COND_EVAL_3(greater_int(y, pos(0)), x, y)
EVAL_3(x, y) → GREATER_INT(y, pos(0))
EVAL_2(x, y) → COND_EVAL_21(greatereq_int(pos(0), x), x, y)
EVAL_2(x, y) → GREATEREQ_INT(pos(0), x)
EVAL_2(x, y) → COND_EVAL_2(greater_int(x, pos(0)), x, y)
EVAL_2(x, y) → GREATER_INT(x, pos(0))
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(x, y) → COND_EVAL_31(greatereq_int(pos(0), y), x, y)
EVAL_3(x, y) → GREATEREQ_INT(pos(0), y)
COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
COND_EVAL_3(true, x, y) → MINUS_INT(y, pos(s(0)))
EVAL_1(x, y) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
EVAL_1(x, y) → AND(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y))
EVAL_1(x, y) → AND(greater_int(x, pos(0)), greater_int(y, pos(0)))
EVAL_1(x, y) → GREATER_INT(x, pos(0))
EVAL_1(x, y) → GREATER_INT(y, pos(0))
EVAL_1(x, y) → GREATER_INT(x, y)
COND_EVAL_11(true, x, y) → EVAL_3(x, y)
COND_EVAL_1(true, x, y) → EVAL_2(x, y)
COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)
COND_EVAL_2(true, x, y) → MINUS_INT(x, pos(s(0)))
EVAL_1(x, y) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
EVAL_1(x, y) → AND(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x))
EVAL_1(x, y) → GREATEREQ_INT(y, x)
COND_EVAL_31(true, x, y) → EVAL_1(x, y)
COND_EVAL_21(true, x, y) → EVAL_1(x, y)
EVAL_3(x, y) → COND_EVAL_3(greater_int(y, pos(0)), x, y)
EVAL_3(x, y) → GREATER_INT(y, pos(0))
EVAL_2(x, y) → COND_EVAL_21(greatereq_int(pos(0), x), x, y)
EVAL_2(x, y) → GREATEREQ_INT(pos(0), x)
EVAL_2(x, y) → COND_EVAL_2(greater_int(x, pos(0)), x, y)
EVAL_2(x, y) → GREATER_INT(x, pos(0))
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 17 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
COND_EVAL_1(true, x, y) → EVAL_2(x, y)
EVAL_2(x, y) → COND_EVAL_21(greatereq_int(pos(0), x), x, y)
COND_EVAL_21(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
COND_EVAL_11(true, x, y) → EVAL_3(x, y)
EVAL_3(x, y) → COND_EVAL_31(greatereq_int(pos(0), y), x, y)
EVAL_3(x, y) → COND_EVAL_3(greater_int(y, pos(0)), x, y)
COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
EVAL_2(x, y) → COND_EVAL_2(greater_int(x, pos(0)), x, y)
COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

eval_3(x, y) → Cond_eval_31(greatereq_int(pos(0), y), x, y)
Cond_eval_3(true, x, y) → eval_3(x, minus_int(y, pos(s(0))))
eval_1(x, y) → Cond_eval_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
Cond_eval_11(true, x, y) → eval_3(x, y)
Cond_eval_1(true, x, y) → eval_2(x, y)
Cond_eval_2(true, x, y) → eval_2(minus_int(x, pos(s(0))), y)
eval_1(x, y) → Cond_eval_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
Cond_eval_31(true, x, y) → eval_1(x, y)
Cond_eval_21(true, x, y) → eval_1(x, y)
eval_3(x, y) → Cond_eval_3(greater_int(y, pos(0)), x, y)
eval_2(x, y) → Cond_eval_21(greatereq_int(pos(0), x), x, y)
eval_2(x, y) → Cond_eval_2(greater_int(x, pos(0)), x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
COND_EVAL_1(true, x, y) → EVAL_2(x, y)
EVAL_2(x, y) → COND_EVAL_21(greatereq_int(pos(0), x), x, y)
COND_EVAL_21(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
COND_EVAL_11(true, x, y) → EVAL_3(x, y)
EVAL_3(x, y) → COND_EVAL_31(greatereq_int(pos(0), y), x, y)
EVAL_3(x, y) → COND_EVAL_3(greater_int(y, pos(0)), x, y)
COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
EVAL_2(x, y) → COND_EVAL_2(greater_int(x, pos(0)), x, y)
COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval_3(x0, x1)
Cond_eval_3(true, x0, x1)
eval_1(x0, x1)
Cond_eval_11(true, x0, x1)
Cond_eval_1(true, x0, x1)
Cond_eval_2(true, x0, x1)
Cond_eval_31(true, x0, x1)
Cond_eval_21(true, x0, x1)
eval_2(x0, x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y)
COND_EVAL_1(true, x, y) → EVAL_2(x, y)
EVAL_2(x, y) → COND_EVAL_21(greatereq_int(pos(0), x), x, y)
COND_EVAL_21(true, x, y) → EVAL_1(x, y)
EVAL_1(x, y) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y)
COND_EVAL_11(true, x, y) → EVAL_3(x, y)
EVAL_3(x, y) → COND_EVAL_31(greatereq_int(pos(0), y), x, y)
EVAL_3(x, y) → COND_EVAL_3(greater_int(y, pos(0)), x, y)
COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
EVAL_2(x, y) → COND_EVAL_2(greater_int(x, pos(0)), x, y)
COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL_3(true, x, y) → EVAL_3(x, minus_int(y, pos(s(0))))
Positions in right side of the pair: Pair: COND_EVAL_2(true, x, y) → EVAL_2(minus_int(x, pos(s(0))), y)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                            ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_1(true, x, y, x_removed) → EVAL_2(x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_21(greatereq_int(pos(0), x), x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_21(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed) the following chains were created:




For Pair EVAL_1(x, y, x_removed) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y, x_removed) the following chains were created:




For Pair EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed) the following chains were created:




For Pair COND_EVAL_1(true, x, y, x_removed) → EVAL_2(x, y, x_removed) the following chains were created:




For Pair EVAL_2(x, y, x_removed) → COND_EVAL_21(greatereq_int(pos(0), x), x, y, x_removed) the following chains were created:




For Pair EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed) the following chains were created:




For Pair COND_EVAL_21(true, x, y, x_removed) → EVAL_1(x, y, x_removed) the following chains were created:




For Pair COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed) the following chains were created:




For Pair EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed) the following chains were created:




For Pair EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed) the following chains were created:




For Pair COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed) the following chains were created:




For Pair COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:

POL(0) = 1   
POL(COND_EVAL_1(x1, x2, x3, x4)) = -1 - x1 - x3   
POL(COND_EVAL_11(x1, x2, x3, x4)) = -1 - x1 - x2 - x3   
POL(COND_EVAL_2(x1, x2, x3, x4)) = -1 - x1 - x2 - x3   
POL(COND_EVAL_21(x1, x2, x3, x4)) = -1 - x3   
POL(COND_EVAL_3(x1, x2, x3, x4)) = -1 - x1 - x2 - x3   
POL(COND_EVAL_31(x1, x2, x3, x4)) = -1 - x2 - x3   
POL(EVAL_1(x1, x2, x3)) = -1 - x1 - x2   
POL(EVAL_2(x1, x2, x3)) = -1 - x2   
POL(EVAL_3(x1, x2, x3)) = -1 - x1 - x2   
POL(and(x1, x2)) = x1   
POL(c) = -3   
POL(false) = 1   
POL(greater_int(x1, x2)) = x1   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = x1   
POL(neg(x1)) = 1   
POL(plus_nat(x1, x2)) = x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 0   
POL(true) = 0   

The following pairs are in P>:

COND_EVAL_21(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
The following pairs are in Pbound:

COND_EVAL_1(true, x, y, x_removed) → EVAL_2(x, y, x_removed)
The following rules are usable:

trueand(true, true)
falseand(true, false)
falsegreater_int(neg(s(x)), pos(0))
truegreater_int(pos(s(x)), pos(0))
falseand(false, true)
falseand(false, false)
pos(0) → minus_nat(0, 0)
neg(s(y)) → minus_nat(0, s(y))
falsegreater_int(pos(0), pos(0))
falsegreater_int(neg(0), pos(0))
pos(s(x)) → minus_nat(s(x), 0)
minus_nat(x, y) → minus_nat(s(x), s(y))
minus_nat(x, y) → minus_int(pos(x), pos(y))
neg(plus_nat(x, y)) → minus_int(neg(x), pos(y))


↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
QDP
                                  ↳ DependencyGraphProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_1(true, x, y, x_removed) → EVAL_2(x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_21(greatereq_int(pos(0), x), x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
QDP
                                        ↳ UsableRulesProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ QReductionProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
and(false, false)
and(false, true)
and(true, false)
and(true, true)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
QDP
                                                ↳ Narrowing
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

EVAL_2(neg(s(x0)), y1, y2) → COND_EVAL_2(false, neg(s(x0)), y1, y2)
EVAL_2(neg(0), y1, y2) → COND_EVAL_2(false, neg(0), y1, y2)
EVAL_2(pos(0), y1, y2) → COND_EVAL_2(false, pos(0), y1, y2)
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)
EVAL_2(neg(s(x0)), y1, y2) → COND_EVAL_2(false, neg(s(x0)), y1, y2)
EVAL_2(neg(0), y1, y2) → COND_EVAL_2(false, neg(0), y1, y2)
EVAL_2(pos(0), y1, y2) → COND_EVAL_2(false, pos(0), y1, y2)
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ UsableRulesProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Narrowing
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
COND_EVAL_2(true, neg(x0), y1, pos(x1)) → EVAL_2(neg(plus_nat(x0, x1)), y1, pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
QDP
                                                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
COND_EVAL_2(true, neg(x0), y1, pos(x1)) → EVAL_2(neg(plus_nat(x0, x1)), y1, pos(x1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
QDP
                                                                        ↳ UsableRulesProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
QDP
                                                                            ↳ QReductionProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
QDP
                                                                                ↳ Instantiation
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1)) we obtained the following new rules [LPAR04]:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Instantiation
QDP
                                                                                    ↳ Instantiation
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2) we obtained the following new rules [LPAR04]:

EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Instantiation
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
QDP
                                                                                        ↳ MNOCProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))
EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Instantiation
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ MNOCProof
QDP
                                                                                            ↳ NonTerminationProof
                                      ↳ QDP
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))
EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))
EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)


s = EVAL_2(minus_nat(s(x), 0), z1a, pos(z2)) evaluates to t =EVAL_2(minus_nat(s(x), z2), z1a, pos(z2))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

EVAL_2(minus_nat(s(x), 0), z1a, pos(0))EVAL_2(pos(s(x)), z1a, pos(0))
with rule minus_nat(s(xa), 0) → pos(s(xa)) at position [0] and matcher [xa / x]

EVAL_2(pos(s(x)), z1a, pos(0))COND_EVAL_2(true, pos(s(x)), z1a, pos(0))
with rule EVAL_2(pos(s(x0)), z1aa, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1aa, pos(z2)) at position [] and matcher [z1aa / z1a, z2 / 0, x0 / x]

COND_EVAL_2(true, pos(s(x)), z1a, pos(0))EVAL_2(minus_nat(s(x), 0), z1a, pos(0))
with rule COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
QDP
                                        ↳ UsableRulesProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ Narrowing
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

EVAL_3(y0, neg(s(x0)), y2) → COND_EVAL_3(false, y0, neg(s(x0)), y2)
EVAL_3(y0, pos(0), y2) → COND_EVAL_3(false, y0, pos(0), y2)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
EVAL_3(y0, neg(0), y2) → COND_EVAL_3(false, y0, neg(0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
EVAL_3(y0, neg(s(x0)), y2) → COND_EVAL_3(false, y0, neg(s(x0)), y2)
EVAL_3(y0, pos(0), y2) → COND_EVAL_3(false, y0, pos(0), y2)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
EVAL_3(y0, neg(0), y2) → COND_EVAL_3(false, y0, neg(0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ NonInfProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed) the following chains were created:




For Pair EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed) the following chains were created:




For Pair COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed) the following chains were created:




For Pair EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed) the following chains were created:




For Pair EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2) the following chains were created:




For Pair COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:

POL(0) = 0   
POL(COND_EVAL_11(x1, x2, x3, x4)) = 1 + x1 - x2 + x3   
POL(COND_EVAL_3(x1, x2, x3, x4)) = x1   
POL(COND_EVAL_31(x1, x2, x3, x4)) = 1 - x3   
POL(EVAL_1(x1, x2, x3)) = 1 + x2   
POL(EVAL_3(x1, x2, x3)) = 1   
POL(and(x1, x2)) = x1   
POL(c) = -1   
POL(false) = 0   
POL(greater_int(x1, x2)) = x1   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_nat(x1, x2)) = x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 1   

The following pairs are in P>:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
The following pairs are in Pbound:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
The following rules are usable:

and(true, true) → true
and(true, false) → false
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
and(false, true) → false
and(false, false) → false
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false


↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
QDP
                                                        ↳ DependencyGraphProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
QDP
                                                            ↳ UsableRulesProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ QReductionProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
QDP
                                                                    ↳ Narrowing
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed) at position [1] we obtained the following new rules [LPAR04]:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
COND_EVAL_3(true, y0, neg(x0), pos(x1)) → EVAL_3(y0, neg(plus_nat(x0, x1)), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
QDP
                                                                        ↳ DependencyGraphProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
COND_EVAL_3(true, y0, neg(x0), pos(x1)) → EVAL_3(y0, neg(plus_nat(x0, x1)), pos(x1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ UsableRulesProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
QDP
                                                                                ↳ QReductionProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
QDP
                                                                                    ↳ Instantiation
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1)) we obtained the following new rules [LPAR04]:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
QDP
                                                                                        ↳ Instantiation
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2) we obtained the following new rules [LPAR04]:

EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ Instantiation
QDP
                                                                                            ↳ MNOCProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ Instantiation
                                                                                          ↳ QDP
                                                                                            ↳ MNOCProof
QDP
                                                                                                ↳ NonTerminationProof
                                ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)


s = EVAL_3(z0a, minus_nat(s(x), 0), pos(z2)) evaluates to t =EVAL_3(z0a, minus_nat(s(x), z2), pos(z2))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

EVAL_3(z0a, minus_nat(s(x), 0), pos(0))EVAL_3(z0a, pos(s(x)), pos(0))
with rule minus_nat(s(xa), 0) → pos(s(xa)) at position [1] and matcher [xa / x]

EVAL_3(z0a, pos(s(x)), pos(0))COND_EVAL_3(true, z0a, pos(s(x)), pos(0))
with rule EVAL_3(z0aa, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0aa, pos(s(x1)), pos(z2)) at position [] and matcher [z2 / 0, x1 / x, z0aa / z0a]

COND_EVAL_3(true, z0a, pos(s(x)), pos(0))EVAL_3(z0a, minus_nat(s(x), 0), pos(0))
with rule COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_1(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greater_int(x, y)), x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_21(greatereq_int(pos(0), x), x, y, x_removed)
EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_21(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
QDP
                                        ↳ UsableRulesProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ Narrowing
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL_3(x, y, x_removed) → COND_EVAL_3(greater_int(y, pos(0)), x, y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

EVAL_3(y0, neg(s(x0)), y2) → COND_EVAL_3(false, y0, neg(s(x0)), y2)
EVAL_3(y0, pos(0), y2) → COND_EVAL_3(false, y0, pos(0), y2)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
EVAL_3(y0, neg(0), y2) → COND_EVAL_3(false, y0, neg(0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
EVAL_3(y0, neg(s(x0)), y2) → COND_EVAL_3(false, y0, neg(s(x0)), y2)
EVAL_3(y0, pos(0), y2) → COND_EVAL_3(false, y0, pos(0), y2)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
EVAL_3(y0, neg(0), y2) → COND_EVAL_3(false, y0, neg(0), y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ NonInfProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed) the following chains were created:




For Pair EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed) the following chains were created:




For Pair COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed) the following chains were created:




For Pair EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed) the following chains were created:




For Pair EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2) the following chains were created:




For Pair COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:

POL(0) = 0   
POL(COND_EVAL_11(x1, x2, x3, x4)) = 1 + x1 - x2 + x3   
POL(COND_EVAL_3(x1, x2, x3, x4)) = x1   
POL(COND_EVAL_31(x1, x2, x3, x4)) = 1 - x3   
POL(EVAL_1(x1, x2, x3)) = 1 + x2   
POL(EVAL_3(x1, x2, x3)) = 1   
POL(and(x1, x2)) = x1   
POL(c) = -1   
POL(false) = 0   
POL(greater_int(x1, x2)) = x1   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_nat(x1, x2)) = x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 1   

The following pairs are in P>:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
The following pairs are in Pbound:

COND_EVAL_11(true, x, y, x_removed) → EVAL_3(x, y, x_removed)
EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)
The following rules are usable:

and(true, true) → true
and(true, false) → false
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
and(false, true) → false
and(false, false) → false
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false


↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
QDP
                                                        ↳ DependencyGraphProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(x, y, x_removed) → COND_EVAL_31(greatereq_int(pos(0), y), x, y, x_removed)
COND_EVAL_31(true, x, y, x_removed) → EVAL_1(x, y, x_removed)
EVAL_1(x, y, x_removed) → COND_EVAL_11(and(and(greater_int(x, pos(0)), greater_int(y, pos(0))), greatereq_int(y, x)), x, y, x_removed)
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
QDP
                                                            ↳ UsableRulesProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ QReductionProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
QDP
                                                                    ↳ Narrowing
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL_3(true, x, y, x_removed) → EVAL_3(x, minus_int(y, x_removed), x_removed) at position [1] we obtained the following new rules [LPAR04]:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
COND_EVAL_3(true, y0, neg(x0), pos(x1)) → EVAL_3(y0, neg(plus_nat(x0, x1)), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
QDP
                                                                        ↳ DependencyGraphProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
COND_EVAL_3(true, y0, neg(x0), pos(x1)) → EVAL_3(y0, neg(plus_nat(x0, x1)), pos(x1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ UsableRulesProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
QDP
                                                                                ↳ QReductionProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
QDP
                                                                                    ↳ Instantiation
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1))
EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL_3(true, y0, pos(x0), pos(x1)) → EVAL_3(y0, minus_nat(x0, x1), pos(x1)) we obtained the following new rules [LPAR04]:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
QDP
                                                                                        ↳ Instantiation
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2)
COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule EVAL_3(y0, pos(s(x0)), y2) → COND_EVAL_3(true, y0, pos(s(x0)), y2) we obtained the following new rules [LPAR04]:

EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ Instantiation
QDP
                                                                                            ↳ MNOCProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ NonInfProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ Instantiation
                                                                                          ↳ QDP
                                                                                            ↳ MNOCProof
QDP
                                                                                                ↳ NonTerminationProof
                                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))
EVAL_3(z0, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0, pos(s(x1)), pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)


s = EVAL_3(z0a, minus_nat(s(x), 0), pos(z2)) evaluates to t =EVAL_3(z0a, minus_nat(s(x), z2), pos(z2))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

EVAL_3(z0a, minus_nat(s(x), 0), pos(0))EVAL_3(z0a, pos(s(x)), pos(0))
with rule minus_nat(s(xa), 0) → pos(s(xa)) at position [1] and matcher [xa / x]

EVAL_3(z0a, pos(s(x)), pos(0))COND_EVAL_3(true, z0a, pos(s(x)), pos(0))
with rule EVAL_3(z0aa, pos(s(x1)), pos(z2)) → COND_EVAL_3(true, z0aa, pos(s(x1)), pos(z2)) at position [] and matcher [z2 / 0, x1 / x, z0aa / z0a]

COND_EVAL_3(true, z0a, pos(s(x)), pos(0))EVAL_3(z0a, minus_nat(s(x), 0), pos(0))
with rule COND_EVAL_3(true, z0, pos(s(z1)), pos(x2)) → EVAL_3(z0, minus_nat(s(z1), x2), pos(x2))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
QDP
                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
QDP
                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
and(false, false)
and(false, true)
and(true, false)
and(true, true)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
QDP
                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL_2(x, y, x_removed) → COND_EVAL_2(greater_int(x, pos(0)), x, y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

EVAL_2(neg(s(x0)), y1, y2) → COND_EVAL_2(false, neg(s(x0)), y1, y2)
EVAL_2(neg(0), y1, y2) → COND_EVAL_2(false, neg(0), y1, y2)
EVAL_2(pos(0), y1, y2) → COND_EVAL_2(false, pos(0), y1, y2)
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)
EVAL_2(neg(s(x0)), y1, y2) → COND_EVAL_2(false, neg(s(x0)), y1, y2)
EVAL_2(neg(0), y1, y2) → COND_EVAL_2(false, neg(0), y1, y2)
EVAL_2(pos(0), y1, y2) → COND_EVAL_2(false, pos(0), y1, y2)
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND_EVAL_2(true, x, y, x_removed) → EVAL_2(minus_int(x, x_removed), y, x_removed) at position [0] we obtained the following new rules [LPAR04]:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
COND_EVAL_2(true, neg(x0), y1, pos(x1)) → EVAL_2(neg(plus_nat(x0, x1)), y1, pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
QDP
                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
COND_EVAL_2(true, neg(x0), y1, pos(x1)) → EVAL_2(neg(plus_nat(x0, x1)), y1, pos(x1))

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
QDP
                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
QDP
                                                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
QDP
                                                                                ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1))
EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL_2(true, pos(x0), y1, pos(x1)) → EVAL_2(minus_nat(x0, x1), y1, pos(x1)) we obtained the following new rules [LPAR04]:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Instantiation
QDP
                                                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2)
COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule EVAL_2(pos(s(x0)), y1, y2) → COND_EVAL_2(true, pos(s(x0)), y1, y2) we obtained the following new rules [LPAR04]:

EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                          ↳ QDP
                            ↳ NonInfProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                      ↳ QDP
                                        ↳ UsableRulesProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Narrowing
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Instantiation
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
QDP

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL_2(true, pos(s(z0)), z1, pos(x2)) → EVAL_2(minus_nat(s(z0), x2), z1, pos(x2))
EVAL_2(pos(s(x0)), z1, pos(z2)) → COND_EVAL_2(true, pos(s(x0)), z1, pos(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.